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ABSTRACT

A three-dimensional computer code (KIVA) is being modified to include state-of-
the-art submodels for diesel engine flow and combustion: spray atomization, drop
breakup/coalescence, multi-component fuel vaporization, spray/wall interaction,
ignition and combustion, wall heat transfer, unburned HC and NOx formation,
soot and radiation and the intake flow process.

Improved and/or new submodels which have been completed are: wall heat
transfer with unsteadiness and compressibility, laminar-turbulent characteristic
time combustion with unburned HC and Zeldo'vich NOx, and spray/wall
impingement with rebounding and sliding drops. Results to date show that
adding the effects of unsteadiness and compressibility improves the accuracy of
heat transfer predictions; spray drop rebound can occur from walls at low
impingement velocities (e.g., in cold-starting); larger spray drops are formed at the
nozzle due to the influence of vaporization on the atomization process; a laminar-
and-turbulent characteristic time combustion model has the flexibility to match
measured engine combustion data over a wide range of operating conditions; and,
finally, the characteristic time combustion model can also be extended to allow
predictions of ignition.

The accuracy of the predictions is being assessed by comparisons with available
measurements. Additional supporting experiments are also described briefly. To
date, comparisons have been made with measured engine cylinder pressure and
heat flux data for homogeneous charge, spark-ignited and compression-ignited
engines, and also limited comparisons for diesel engines. The model results are in
good agreement with the experiments.
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INTRODUCTION

A detailed understanding of diesel engine combustion is required in order to
work effectively at improving performance and reducing emissions while not
compromising fuel economy. The objective of this research is to apply
advanced modeling techniques to study the influence of in-cylinder processes
on efficiency and pollutant emissions. The three-dimensional code, KIVA
[1,2], has been selected for use since it is the most developed of available codes.

State-of-the-art submodels for the important physical processes in diesel
combustion are being included in KIVA as part of the research effort. This
report summarizes progress to date on models for wall heat transfer, fuel
drop vaporization, spray vaporization, atomization, ignition and the intake
flow process. Future activities under the grant are also described briefly .

Close contact is being maintained with engine industries during the course of
the research. This includes participation in DOE diesel engine working group
meetings!. In addition, technology has been transferred directly to industry
(e.g., we have already made the FORTRAN subroutines listed in Appendix 3
of this proposal available to the Software Development Group, Engine
Division, Caterpillar Inc.).

Other activities that have helped the research effort include our pro-active
role in the formation and organization of the KIVA users group (which
currently numbers about 80 organizations in the U.S. - see Appendix 1). This
activity has had the additional benefit of keeping us informed of code
enhancements and new developments elsewhere in the user community.
Improvements are being made to the KIVA code itself at the Los Alamos
National Laboratories. We have been able to take advantage of their
enhancements by ensuring that our submodels are transportable in the form
of subroutines (e.g., Appendix 3).

BACKGROUND

The diesel engine is the leading heavy-duty power plant because of its
superior energy efficiency. However, because of environmental concerns,
proposed federal emission standards require reductions in both nitric oxides
(NOx) and particulates for heavy-duty diesel engines. A detailed
understanding of combustion is required in order to work effectively at
reducing these by-products of combustion within the engine cylinder, while
still not compromising engine fuel economy. Alternative methods of

Prof. Reitz gave the presentations ‘Modeling Diesel Engine Spray Evaporation and
Combustion' at the Spring 1991 DOE Diesel Group Meeting, Cummins Engine Company,
Indiana, May 2, 1991, and '3-D Modeling of Diesel Spray Vaporization and Combustion,’
Fall 1991 DOE Diesel Group Meeting, Pennsylvania State University, October 23, 1991.
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controlling emissions outside of the engine cylinder by means of particulate
traps and catalysts are not appealing due to their high complexity and cost.

Electronically controlled diesel fuel injection equipment has been under
active development for the past few years. Recent developments in
microprocessor technology have created opportunities for better control of
fuel delivery and timing than has hitherto been possible. This improved
flexibility over the injection parameters offers the possibility of major
improvements in diesel engine performance [3]. Improved injection timing
flexibility and fast closing times are factors that are known to impact engine
emissions [4,5]. However, the improved flexibility also introduces more
configuration possibilities, and this complicates the task of selecting optimum
injection parameters.

The objective of this research program is to apply advanced modeling
techniques to provide guidance for the selection of fuel injection and
combustion parameters. This will help in the evolution of more fully
optimized, clean and efficient diesel engines. Three-dimensional
mathematical models such as the KIVA code are now available and offer a
means to help gain the needed understanding of engine combustion and can
accelerate the rate of progress in engine development beyond that obtained
with traditional 'cut and try' approaches.

In the compression ignition (CI) diesel engine a number of steps are involved
in the combustion process. The air is raised to a high temperature on the
compression stroke. Multiple high pressure jets of fuel are injected into the
chamber which disintegrate into dense vaporizing sprays. After some delay
time, self-ignition occurs at points within the sprays. A period of rapid
pressure rise follows, during which the vaporized (premixed) portions of the
fuel are burned. In the final stages of combustion, diffusion and mixing
processes lead to a controlled rate of pressure rise. In some engines, part of
the injected fuel impinges on the combustion chamber walls and the final
stage of combustion is then influenced by the rate of vaporization of the fuel
from the walls. Thus, engine performance (both efficiency and emissions
levels) depends on the spatial and temporal details of the atomization of the
liquid, vaporization of the droplets, mixing of the fuel and air, and other
factors. It is necessary to understand all of these processes and to identify their
controlling parameters in order to improve engine performance.

There is evidence that in-cylinder control of pollutant emission levels is
possible through the use of ultra-high injection pressures and modified
injector nozzle designs or modified in-cylinder gas flow-fields [6,7]. Also,
optimized low-heat-rejection (LHR) engines have demonstrated significant
reductions in smoke and particulates [8]. Unfortunately, the high in-cylinder
gas temperatures of LHR engines also lead to high NOx levels and methods
for NOx control such as injection timing retard tend to increase fuel



consumption. It has been difficult to achieve satisfactory pollutant control
strategies over wide ranges of engine operation with these approaches alone.

The present advanced modeling techniques will help supply engine and fuel
injection design guidelines in this study. The approach taken is to use a
three-dimensional code that includes the most advanced available submodels
for the important processes that influence diesel combustion. The model
accounts for the complex interactions that occur in the turbulent, multiphase,
combusting three-dimensional flow in the engine. The complexity of these
interactions has made it difficult to gain the necessary level of understanding
required for in-cylinder control of emissions by traditional methods.

RESEARCH PROGRAM

The research program was initiated in the Fall of 1989 as a five year program.
The emphasis of the research is on the application of a comprehensive engine
combustion code to assess the effect of the interacting subprocesses on diesel
engine performance, rather than on the development of new models for the
subprocesses themselves. The elements of the code are being assembled from
existing state-of-the-art submodels. This use of multidimensional modeling
as an engine development tool is timely and justifiable due to recent
advances in submodel formulations.

The program was expanded to include the modeling of the diesel engine
intake process in 1990 due to its importance in the combustion process. A
summary of the 1989-1990 research activities has been described in Refs. [12-
14]. The research has been organized into three main activities: Part A -
Submodel Implementation, Part B - Model Application and Part C -
Experiments. Part A tasks are described in the Progress-to-date section
(page7). Part B tasks were started in the the summer of 1991 and are described
on page 33. The Part C tasks are described briefly in the Future Work section
of this report on page 35.

KIVA CODE

The KIVA code has been chosen for use in the present work since it is the
most developed of the available 3-D engine models. The code solves the
conservation equations for the transient dynamics of vaporizing fuel sprays
interacting with flowing multicomponent gases which are undergoing
mixing, ignition, chemical reactions, and heat transfer. The code has the
ability to calculate flows in engine cylinders with arbitrary shaped piston
geometries, including the effects of turbulence and wall heat transfer.
Accuracy of KIVA predictions has been assessed by comparisons with
measured cylinder pressures in direct-injection diesel [9], direct-injection
stratified-charge rotary engines [10], and in homogeneous-charge reciprocating
engines [11].



Due to practical limitations of computer storage and run times it is necessary
to introduce submodels into engine codes for processes that occur on time
and length scales that are too short to be resolved (e.g., to resolve the flow-
field around 10 um diameter drops in a 10 cm diameter combustion chamber
requires about 1012 grid points. A practical limit for current computers is
about 105 grid points). The use of submodels to describe unresolved physical
processes introduces some empiricism into the computations. However, the
compromise between accuracy and feasibility of computation is justified by
the insight which model calculations offer and confidence in the model
predictions is gained by comparison with experiments.

In the present work, the KIVA code is being modified to include existing
state-of-the-art submodels for important processes occurring in diesel engines.
Some of the submodels already appear in the standard KIVA-II code (e.g., the
drop drag, turbulence dispersion and turbulence modulation submodels - see
Flow Chart of KIVA Subroutines below). Others have already been
developed and applied in earlier separate versions of KIVA. Thus, the
present research also serves to assemble the most recent models into one
comprehensive version of KIVA. The Subroutines that have been modified
to data in this effort are identified with asterisks in the flow chart.

PROGRESS TO-DATE

Progress to date in each of the Part A tasks scheduled for the first and second
years is discussed in this section and summarized in Table 1 (page 9).
Additional details of progress are given in Ref. [14]. Appendix 2 gives
additional details of published papers connected with the research activity.
Appendix 3 contains FORTRAN source code listings for the spray/wall
impingement, combustion and atomization submodels that have been
upgraded as part of the research activity.

1. Implement KIVA on TITAN

Due to the high cost of super-computer time, it is important to demonstrate
that the KIVA code can be run on dedicated super-workstations. This will
ensure that the code is attractive to industrial users. The KIVA-2 code has
been running on the Stardent TITAN computer at the Engine Research
Center since 9/89. With the model P-3 CPU boards (installed 8/90) we are able
to vectorize KIVA-2 satisfactorily. Our benchmark runs indicate that the
TITAN now runs only a factor of 10 slower than a CRAY XMP. Also, under
ARO funding, the TITAN has been expanded from two to three CPUs, which
has increased productivity. In addition, we have been able to secure
donations of CRAY computer time from CRAY Research, Inc. and from the
San Diego Supercomputer Installation. Thus, the availability of computer
time has not impeded progress on the grant.
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A. Submodel Implementation

Table 1 - Submodel Implementation

Year

Phase / Activity

9/1/89
9/1/90
1

9/1/90
9/1/91
2

9/1/91
9/1/92
3

9/1/92
9/1/93

9/1/93
9/1/%

Implement KIVA-2 on
TITAN

Atomization,
spray/wall interaction,
heat transfer

HC and NOx emission

Multicomponent fuel
Vaporization

Diesel ignition and
combustion

Soot and radiation

Intake flow modeling
Phase 1 Mesh
Phase 2 Mesh
Moving valves




2a. Spray/Wall Interaction

The KIVA-2 code does not contain a spray/wall interaction model and the
model of Naber and Reitz [15] has been included in KIVA. This model has
been refined further to account for rebounding and sliding drops [16] (see
Appendix 3). Upon impact, low Weber number drops rebound from the
surface with an angle of rebound that is determined by curve-fitting
experimental data on single drops. The need to consider drop rebound was
discovered when computations of diesel engine cold-starting were made [16].
In this case, drop rebound provides a mechanism for fuel (vapor) to penetrate
back into the central regions of the chamber where the gas temperature is
high enough for ignition to occur. Without drop rebound the fuel is
predicted to accumulate near the walls where the gas temperature is too low
for ignition [16].

2b. Wall Heat Transfer in Premixed-Charge Engine Combustion

Wall heat transfer models have been tested for premixed-charge, spark-ignited-
engine combustion as described in Ref [17]. Since the combustion model in
KIVA does not account for the influence of turbulence on combustion, a laminar
and turbulent combustion submodel has been added for this study (see also task 5
below).

Typical results showing the application of the model to spark-ignited premixed-
charge engine combustion are shown in Fig. 1 [17]. As can be seen in Fig. 1a, the
computed results (squares) reproduce the form of measured pressure data
(circles) very well.

2500 . : : : 2.0 T T T T T
2000 | [ Measured /‘ |
—_- " | —=~Computed T R . ]
o] ¢ —&-Modified
o £
S 4500} ——Motored § ] 5., ]
S x
Z 10004 i
g T 05 -
a 500 *
0.
0 1 i L L 0

-30 -20 -10 0 10 20 30
Crank angle (degrees)

30 20 10 O i0 20
Crank angle (degrees)

Figure 1 Comparison between measured and predicted cylinder pressure

a.) - left, and wall heat flux b.) - right, for premixed-charge engine combustion
using the characteristic time combustion model and a heat transfer model that
includes the effect of compressibility and unsteadiness (modified case).

Engine speed is 1500 rev/min.
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The wall heat flux predictions in Fig. 1b were obtained using the original
KIVA 'log-law-of-the-wall' heat transfer model (squares) and a modified
model that accounts for the effects of compressibility and unsteadiness on the
heat transfer (triangles) [17]. The predicted heat transfer is seen to be much
improved using the upgraded model, indicating that unsteadiness and
compressibility effects need to be considered in engine computations.
However it is also evident that additional improvements are needed in heat
transfer models, since there is still a 10-20% discrepancy between measured
and predicted heat flux values [17]. Reference [17] describes other results that
test the wall heat transfer and combustion models over a range of engine
operating conditions (motored and fired conditions at two engine speeds).

Further work is in progress on testing the heat transfer models using
homogeneous charge, compression ignition engine data (see Task 5, below).

2¢. Atomization, vaporization and combustion

Spray computations have been made using our atomization model that is
based on considerations of surface wave instabilities [18]. In modeling the
atomization process in high pressure sprays, it has been shown that the drop
size and penetration length predicted by KIVA are in good agreement with
experimental data for non-evaporating sprays at room temperature [18].

However, for high pressure and high temperature sprays, significant
discrepancies between the computational and experimental data have been
observed [19]. As shown in Fig. 2, using the grid resolution that ensures grid
free results in non-vaporizing sprays, the computed vapor penetrations
under-estimate the measurements. Since spray penetration directly
influences combustion [19], heat transfer, soot formation and other processes,
identifying the causes of this discrepancy and making corresponding
modifications in KIVA has become essential to continued progress on the

grant.

The computations in Fig. 2 were compared with experimental data of
Kamimoto et al. [20] for room temperature liquid n-tridecane (C13H28)
injections from a single hole nozzle (d=0.16mm) into nitrogen gas at 850 - 900
K. The gas pressure was maintained at 3 MPa while the injection pressure
were varied from 30 MPa to 110 MPa.

The effects of several factors were considered in the present study, including
the influence of vaporization and gas compressibility on the atomization
process, and the effects of model constants and numerical parameters.

The spray penetration was found to be very sensitive to the grid size,

especially to the grid size near the exit of nozzle, as indicated in Fig. 3. For
relatively coarse meshes the penetration increases gradually as the grid size
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Figure 2 Computed spray vapor penetration versus time. Symbols are
measurements of Kamimoto [20] and lines are KIVA predictions (penetration
is defined as that distance from the nozzle exit where the fuel vapor
concentration reaches 10% of the maximum value in the spray).
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Figure 3 Effect of numerical mesh grid size on spray penetration. AP=30 MPa,
Line 1: grid size=1 x 5 mm

Line 2: non-uniform grid 1.25 x 2 mm (near nozzle) to 1.25 x 4.5mm

Line 3: uniform grid 1.25 x 2 mm.

Line 4: non-uniform grid 0.75 x 1 mm (near nozzle) to 0.75 x 3 mm
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decreases, which explains why the effect was not noticed in our previous
studies [19]. For very fine meshes the penetration is increased dramatically.
An explanation for the observed mesh-dependence is that the fuel vaporized
from a drop is distributed evenly over the whole computational cell that
contains that drop at the end of each timestep in KIVA. This procedure
might be reasonable for very fine meshes (or large timesteps) but is hardly
satisfied for coarse meshes where the vapor would not have enough time to
diffuse or mix over the whole cell. Hence for coarse meshes the local vapor
concentration around a drop should be higher than the cell-volume-averaged
value. This leads to an over-estimate of the drop evaporation rate and a
corresponding under-estimate in the spray penetration.

The implications of this sensitivity to grid resolution for engine
computations, where computer cost considerations limit grid sizes, are
substantial. One solution to the grid sensitivity problem could be to develop
correction procedures for use with coarse grids. For example, assume that
instead of occupying the whole cell, the vapor evaporated from a drop is
confined within a sphere with radius ~ (D t)/2, where D is the vapor
diffusivity in the gas and t is the lifetime of the drop. The vapor mass
fraction is now averaged over the sphere instead of over the entire cell (until
the sphere volume reaches that of the cell, see Fig. 4). Figure > shows the
penetration thus calculated for a coarse mesh (1.25 x 2 mm) which can be seen
to be much improved.

Sub-grid-scale vapor diffusion model

A

172
R=c(Dt)

- dx —

Figure 4 Schematic diagram of the sub-grid-scale vapor diffusion model. The
fuel vapor concentration is calculated using the volume of the sphere with
radius R instead of the cell volume until the vapor fills the cell.
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R T B e i —
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Figure 5 Influence of numerical mesh size on spray penetration.
Symbols: measurements of Kamimoto [20] (AP=30 MPa)
Line 1: cell-volume averaged vapor (standard KIVA with - 1.25 x 2 mm mesh)
Line 2 : new vapor-sphere averaged correction method ( 1.25 x 2 mm mesh)
Line 3 : same as line 1, but with 0.75 x 1 mm mesh.

The comparisons with the constant volume bomb experiments demonstrated
the importance of grid resolution in vaporizing spray calculations. For that
reason, the engine calculations have been made using fine grids in an attempt
to accurately resolve the spray. The computations were made for Cummins
NH engine for which extensive experimental data are available with
measurements of injection characteristics, cylinder pressure, and flame
temperatures from Yan and Borman [21]. Results using a cycle analysis
simulation program are available for the same engine [22]. Data, such as the
wall temperatures, calculated using the steady state mode were used as input
for the initial conditions in the multidimensional calculations as shown in
the table below. Additional details of the computations are described in
Gonzalez et al. [23].

The calculations were started at inlet valve closing (150 deg BTDC) and
considered a 45 degree sector of the engine that included one of the eight
spray plumes (i.e., sector symmetry was assumed). The results shown in Figs.
6 and 7 compare spray penetration computations (made without considering
combustion) for two different grids. The first grid used 25x6x18 cells with
equal spacing in the azimuthal direction. The second grid used the same
number of axial cells but had nonuniform azimuthal spacing and gives much
increased resolution in the vicinity of the spray - the minimum azimuthal
angle is 2 degrees compared to 7.5 degrees in the equally spaced grid. Both
grids had 7 axial planes in the bowl and 3 planes in the squish area at TDC. As
can be seen, there is a remarkable effect of numerical resolution on the

14



Cummins Engine Data

Cylinder Bore 139.7 mm
Stroke 152.4 mm
Compression ratio 13.23
Displacement 2.33 liters
Number of spray nozzle orifices 8
Nozzle hole diameter 0.2 mm
Spray axis, angle from head 18°
Combustion chamber Quiescent
Piston crown Mexican hat type
Engine speed 1500 r/min (constant)
Overall equivalence ratio 0.6
Air flow rate 0.353e-2 kg/cycle
Fuel flow rate 0.144e-3 kg/cycle
Intake tank pressure 148.2 kPa
Intake tank temperature 302K
Engine temperatures at IVC (constant during the cycle) N
Cylinder wall 405K
Cylinder head 486 K
Piston surface 578 K
Valves face 773K
Mass average gas temperature at IVC 359 K
Cylinder pressure at IVC 157.9 kPa
Swirl number 1.0
Fuel Tetradecane
Injection starts 182 btdc
Injection ends 112 atdc

predicted spray penetration at TDC. It should be noted that these
computations were made using the atomization model of Reitz [18] with no
modification to the vaporization routines.

Figure 8 shows computations that include the effect of combustion, made
using the same grids as those for the results in Figs. 6 and 7. As can be seen,
the fine grid computation gives a higher predicted peak cylinder pressure
than the coarse grid computation. However, the predicted pressures still
underpredict the measured pressures substantially. The results shown in Fig.
9 demonstrate that the details of the combustion model have a large effect on
the predicted cylinder pressures, particularly for the fine grid computations.
For Fig. 9 the computations used a reduced value of the pre-exponential
constant, viz. K; = 7.68x108. This value of K; was found to give the highest
possible peak cylinder pressure for both the fine and the coarse grid cases.
Further reductions in K; caused unrealistically long ignition delays. It is seen
that the discrepancy between measurements and predicted cylinder pressures
is reduced significantly for the fine grid computation with the revised
combustion model constant.

15



Figure 6 Plan view of sprays showing effect of grid resolution on predicted
spray penetration. TDC, 1500 rev/min, computations made without
considering combustion. Top: Coarse grid which uses 25x6x18 cells. Bottom:
Fine grid which uses 24x12x18 cells with non-uniform azimuthal spacing.
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Figure 7 Elevation view showing effect of grid resolution on predicted spray
penetration for the conditions of Fig. 17. Top: Coarse grid which uses 25x6x18

cells. Bottom: Fine grid which uses 24x12x18 cells with non-uniform
azimuthal spacing.
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The reason for the improved pressure predictions is seen in Fig. 10. Figure 10
shows the predicted temperature contours and spray drop locations in the
chamber at TDC in a plane through the center of the spray for the coarse and
fine grid cases of Figs. 6, 7 and 9 (i.e., using the revised combustion model
constant K;). As can be seen in the fine grid results, the high temperature
contours are now located closer to the edge of the bowl, in better agreement
with the experimental observations of Yan and Borman [21] who, using a
radiation probe mounted in the cylinder head, found that the flame reached
the piston bowl outer surface between 6 deg BTDC and 1 deg ATDC. However,
the coarse grid temperature contours show that the flame is still confined to
the region near the nozzle. (The position of the high temperature regions in
the combustion cases of Fig. 10 is seen to be correlated with the spray
penetrations (without combustion) shown in Fig. 7.)

The sensitivity of the fine grid results to the combustion model constants
indicates that further optimization of the results in Fig. 9 will require
improved combustion models. For example, the simplified Arrhenius-type
combustion model used in this study does not specifically account for ignition
processes nor does it include the effect of turbulent mixing that is known to
be important in diesel combustion. This is the subject of Task 5 below.

The atomization model itself has been improved by extending the stability
analysis to consider an evaporating liquid surface. In this analysis [24] the
evaporation flux of a perturbed surface with local curvature R was assumed
to be proportional to that of a spherical droplet of radius R, and the kinematic
condition (jump condition) at the liquid-gas interface is modified to include
the effect of surface evaporation velocity. The recoil force due to evaporation
is also taken into account in the interface normal stress equation [25,26].

A new dispersion equation was obtained as shown in Fig. 11, where Va is a
dimensionless parameter representing the evaporation level. Figure 11
shows that surface evaporation reduces both the growth rate and
wavenumber of the most unstable waves; hence the surfaces waves break
slower and produce larger droplets. The influence of this phenomenon on
the atomization process is being evaluated.

An additional consideration is the influence of the compressibility of the
ambient gas on the atomization process. In the stability analysis of Reitz [18],
it was assumed that both liquid and gas are incompressible. The validity of
this assumption is questionable for the high injection pressures of interest in
diesel engines since the Mach number often exceeds 0.3. To study the gas
compressibility on high speed spray, we have adopted a method where the
dynamic pressure in the gas includes the effect of Mach number following
Bradley [27,28]. The effect of gas compressibility on atomization is being
assessed.
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Figure 8 Predicted cylinder pressure using the unmodified combustion
model with Kj = 3.68x1010 showing effect of grid resolution for the coarse and
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Figure 10 Elevation view showing effect of grid resolution on predicted spray
penetration and temperature contours for the conditions of Fig. 6. Top:
Coarse grid which uses 25x6x18 cells (h=2660 K,1=917 K). Bottom: Fine grid
which uses 24x12x18 cells with non-uniform azimuthal spacing (h=2720 K,
1=1090 K).
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Figure 11 Predicted wave growth rate versus wavenumber for different
evaporation levels from the modified dispersion relationship.

3. HC and NOx emission

The combustion model specifies the rate of conversion from reactants to
products using a characteristic time which is controlled by the longer of the local
turbulent mixing or laminar kinetics times and is formulated such that correct
thermodynamic equilibrium is recovered in the burned gas [17]. The correct
burned-gas temperature is needed for accurate NOx predictions using the
Zeldo'vich kinetics model which has been included in KIVA . The combustion
and NOx models are included in Subroutine Chmprn in Appendix 3.

The combustion model automatically predicts unburned hydrocarbon
(HC) in regions of low gas temperature or high equivalence ratio where the
characteristic chemistry time is large and the conversion of fuel to products is
arrested. Unburned HC and NOx predictions will be examined in the model
application project (see Table 2, page 33).

4. Multicomponent Fuel Vaporization

Our initial attempts to model diesel engine combustion phenomena revealed
major qualitative discrepancies between computations and experiments (19]
(see also Task 2 above). These discrepancies motivated a critical evaluation of

single component drop vaporization models.

The fuel considered in the study was hexadecane (T¢cr=725 K), and a single 50-
pm diameter droplet was injected at a velocity of 100 m/s into a cylinder
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containing air at 40 atm and 800 K. The mesh used in this phase had 20x1x60
cells (1 x 2 mm cells).

The original KIVA vaporization model is a low pressure model that is based
on the following assumptions : a. spherical symmetry, b. single component
fuel, ¢. uniform drop temperature, d. constant fuel density and, e. unity Lewis
number. Assumptions d. and e. have been removed in the present effort, and
the details are summarized below. The preparatory phases of modeling
multi-component fuels (assumptions b. and c.) has been completed. The
spherical symmetry assumption was considered to be reasonable for stable,
non-breaking drops.

Since the injected drops undergo a significant temperature variation during
their life-time and the properties of the fuel change considerably, the
governing equations for vaporizing drops were rewritten to include variable
liquid density which was not accounted for in the original KIVA.

Figure 12 shows the predicted drop size variation (drop radius non-
dimensionalized by initial radius) as a function of time using the original
KIVA vaporization model, and using the new model that accounts for
variable liquid density. With variable density, the drop size increases in the
heat-up period. This size increase is accompanied by an increase in the
available surface area which increases the vaporization rate resulting in a
shorter drop lifetime.

An additional factor that was considered is the influence of mass transfer on
the heat transfer for vaporizing drops. Various corrections have been
proposed in the literature but the one used in KIVA assumes that the Lewis
number of the fuel vapor is unity. Computational results under the
conditions of interest show that the Lewis number is typically between 4 and
5. This observation has motivated the use of the correction of Priem et al. [29]
in place of the KIVA correction.

As can be seen in Fig. 12, the variable Lewis number effect (which represents
superheating of the vapor around the drop) also leads to shorter drop
lifetimes. The modified version of KIVA now includes both variable fuel
density and Lewis number effects, and the results are seen in Fig, 12 to lead to
a significant reduction in the predicted drop lifetime. Other results show that
these reductions in lifetime are not as large at lower values of the drop-gas
relative velocity, as would be expected from the form of the correction terms.

Work is also in progress on implementing a multi-component fuel
vaporization model into KIVA that is based on the works of Refs. [30,31].
Preliminary results are shown in Fig. 13 for a 50 um diameter, 50%
pentane/%0% octane drop at 300 K injected into a 800K, 4 MPa nitrogen
environment. The drop was injected at 100 m/s.
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Figure 12 Predicted drop size variation with time showing the effect of
variable fuel density (var p) and non-unity Lewis number (z only). Modified

KIVA results includes both density and Lewis number effects.
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Figure 13 Predicted fuel drop location and concentration contours at 2 ms
after injection (the injector is located at the top center of the diagrams). 50 um
diameter, 50% pentane/50% octane drop at 300 K injected into a 800K, 4 MPa

nitrogen environment. Chamber is 40 mm in diameter.
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5. Diesel ignition and combustion

Our preliminary modeling of diesel ignition and combustion used kinetic
constants from the ignition study of Bergeron and Hallet [32] to specify the
Arrhenius rates for the laminar chemistry time in the combustion model
[19,23]. In the current effort, the laminar and turbulent characteristic time
combustion model of Abraham et al. [33] that was used for the spark-ignited
engine studies (see Task 2, above) has been extended to allow predictions of
ignition [34].

The homogeneous charge, compression-ignition engine experiments of Boggs
[35] were used for this study. These experiments were performed in the CFR
engine at the Center using ethylene fuel. Six cases were studied that include
two engine speeds (600 and 1200 rev/min), two swirl ratios (1.2 and 8) and two
compression ratios (10.5 and 6.3 - equivalence ratios of 0.24 and 0.4). Details of
the engine geometry are given below. The residual amounts and exhaust
temperature were estimated by using the method of Yuh and Mirsky [36].

CFR Engine specifications

cycle 4-Stroke

Bore 83.1 mm

Stroke 114.3 mm

. Connecting Rod Length 254.0 mm

Displacement 620 c.c.

Valve Supercharge cam
Lift 7.93 mm
Intake timing Open 15 0 BTC, Close 50 0 ABC
Exhaust timing Open 50 0 BBC, Close 150 ATC

Cooling System Evaporative, atmospheric pressure

Water coolant

The time rate of change of the partial density of species i , due to conversion
from one chemical species to another, is given by dY;j/dt =-(Yj- Y;")/ tc [33],
where Yj is the mass fraction of species i , and the * indicates local and
instantaneous thermodynamic equilibrium values. tcis the characteristic
time for reaction which is assumed to be the sum of the laminar (high
temperature) chemistry time t¢ , the turbulence mixing time t¢, and ignition
(low temperature) chemistry time tj, which was not present in the original

combustion model, i.e.,, tc =tz +t; +1tj.

The ignition characteristic time tj was modeled using data from elementary
initiation reactions of ethylene [37] and has the Arrhenius form. Since this
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timescale represents many possible reaction paths, it was felt justifiable to
adjust the pre-exponential constant slightly to give the best overall agreement
with the experiments. It was found to be possible to match all cases
reasonably well with one set of ignition model constants. Crevice flow effects
were found to be significant for this engine, and the crevice flow model of
Reitz and Kuo [38] was implemented in KIVA. It was necessary to measure
the piston-cylinder-liner crevice volumes on the engine.

Typical results showing comparisons between measured and predicted
cylinder pressures are given in Fig. 14. The level of agreement is quite good.
It should be noted that this level of agreement was not possible if the
turbulent mixing timescale was not included as a parameter in the
combustion model.
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Figure 14 Comparison between computed and measured cylinder pressures
for compression ignited, homogeneous charge engine combustion (engine
speed 1200 rev/min, compression ratio 11.5, swirl ratio 8.0, equivalence ratio
0.24).

This important conclusion implies that thermal mixing phenomena control
the rate of combustion, even in this engine that is characterized by the
absence of a propagating flame. The characteristic timescales are shown in
Fig. 15. As can be seen, ignition is controlled at low temperatures by the
ignition timescale. Notice that the high temperature laminar chemistry
timescale never plays a role in determining the combustion rate since it is
always smaller than the other characteristic times.
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Figure 15 Characteristic combustion times versus cylinder gas temperature
for the compression-ignited, homogeneous-charge engine case of Fig. 14.

The location of the combustion regime for this engine has been compared
with the internal combustion engine regimes proposed by Abraham et al. [39]
which consider the Damkohler number (ratio of turbulence mixing time to
the reaction time) and the turbulent Reynolds number (based on the integral
length scale). The present engine combustion was found to be located in the
distributed reaction regime once combustion starts.

The corresponding wall heat flux predictions are compared with the
experimentally measured values in Fig. 16. The phasing of the heat flux is
well predicted, although the peak values are under-estimated by amounts
that are similar to those for the spark-ignited engine shown in Fig. 1. The
implication of these results about the necessity to include the effect of
combustion in wall heat transfer models is being investigated.

The next phase of the work will involve the above characteristic time
ignition model, and other ignition models to improve spray combustion
predictions (see Task 2 above).

6. Soot and Radiation

Work will begin on this effort in the next year (see Future Work).
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Figure 16 Comparison between predicted and measured wall heat flux for
compression ignited, homogeneous charge engine combustion (engine speed
1200 rev/min, compression ratio 11.5, swirl ratio 8.0, equivalence ratio 0.24).

7. Intake Flow Modeling

The intake flow work is proceeding on schedule. Initial phase one
calculations are successfully being performed to evaluate simple flow fields
and different grid schemes. In addition, grid generation for realistic multi-
valve port geometries is nearing completion.

Intake flow modeling is being implemented using KIVA-3. This is a new,
unreleased version of KIVA for which the Engine Research Center is serving
as a beta test site. The major advancement of KIVA-3 over previous versions
is the use of unstructured grids. This provides an efficient means of
representing complex, multi-domain geometries such as the intake port,
valve, and cylinder. In addition, KIVA-3 retains the ability to model moving
grids and allows different regions to become disconnected during a
calculation.

KIVA-3 is now tested and running on the Cray machines used at the ERC.
An interface between KIVA-3 and the graphical post-processing program,
PLOT3D, has also been implemented. Initial calculations on simple (but
multi-domain) geometries are being carried out to test feasibility of gridding
schemes and for initial examination of intake flow fields.

An example calculation is shown in Fig. 17. The initial gridding and sample
calculation used a stationary valve head and stem with a moving piston and
considered the intake stroke. The 3-D view of the velocity field in Fig. 17 was
obtained by converting KIVA-3's post-processor to give PLOT3D compatible

27



Figure 17 Intake flow computation using KIVA-3 for a centrally located
stationary valve at 120 degrees after top-dead-center.
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output. The computational grid was created using the KIVA-3's pre-
processor. A constant pressure boundary condition was used at the top of the
intake port. The flow enters the cylinder and is deflected radially outward by
the valve head. The cylinder wall deflects the flow downwards and a large
scale recirculation pattern is established. Despite the coarse grid used in these
initial computations, the flow patterns are very similar to visualization
experiments by Eaton and Reynolds [40] in a motored engine with a centrally
located valve.

Grid generation remains a major task for the intake flow calculations,
since it is so time consuming to create a complex 3D grid. Work is
underway to replace KIVA-3's simple grid generator with the GRIDGEN
code developed by General Dynamics under Air Force contracts. This code
has been selected over the EAGLE code because it is more flexible and it
makes use of our Silicon Graphics IRIS workstation. Also, GRIDGEN is
being used by many other users (we have joined a grid generation users
group (NAS SigGrid, NASA Ames)).

Grid generation with GRIDGEN is a three step process. The first step is the
division of the geometry into logical blocks. The second step is the formation
of a computational grid on each face of each block. This establishes the
surface grid that will be used to generate the volume grid in the third step.
The final step is the generation of the 3D volume grid. This is a fairly
intensive calculation that is currently implemented only on CRAY
computers running COS. Modifications to run under UNICOS or on the
Stardent Titan are currently being investigated. Results of this step are
transferred back to the Iris for visualization. The file containing the 3D grid
information is then reformatted for input to KIVA-3.

The basic geometry used in step one of this process is obtained from digitized
data of the intake manifold. An expanding flexible foam was used to
transform the manifold's internal features into a mold form. Liquid acrylic
was poured around the foam form to create a full size replica of the original
manifold geometry. The acrylic casting was then cut into slices. Features
machined into the acrylic block (see Fig. 18) allow the longitudinal position of
each slice to be determined.

A computerized video measurement technique transposes the physical
geometry contained in the cross sections into coordinate data. This technique
digitizes the images using edge finding algorithms, and calculates the line
coordinates using parametric splines. The output is the three dimensional
coordinates that correspond to the cross section geometry. The technique is
repeated for each slice until all geometry is recorded. Finally, the cross section
geometry is combined and formatted to serve as input for step 1 of the grid
generation process.
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Figure 18 Schematic showing foam mold of intake port and acrylic block
used to obtain digitized geometry.

Figure 19 shows a grid of a Caterpillar engine intake port (the interior grid is
removed for clarity) that has been generated using this method.

Various approaches for implementing a moving valve into KIVA-3 are

currently being evaluated. The moving valve requires that different regions

of the grid move relative to each other. This will implemented with a
variation of the “snapper” algorithm used to move the piston in KIVA-3.
This algorithm maintains grid point connectivity by snapping grid points

between neighboring cells as the grid moves. The snap occurs when the gird
has moved a specified percentage of a cell distance. A method of using the
snapper algorithm with the moving valve has been developed and is shown
schematically in Fig. 20. Figures 20 (a) and (b) show the grid as valve begins to
move upwards; all vertices are active in the calculation until the grid reaches

a deformation limit. At the deformation limit (Fig. 20 (c) ), the snapper

algorithm inactivates the six open circle vertices and moves the eight square

vertices down to the valve surface. The six vertices on the valve face are

moved down into the cylinder region and replaced by new vertices. Volume

weighted interpolation is used to reassign all properties associated with
snapped vertices and their cells.
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Figure 19 Grid generation for a single cylinder Caterpillar engine intake port.
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(0

Figure 20 Schematic showing use of “snapper” algorithm for moving valve.
Open circles and squares are used to show the movement of vertices as the
valve closes.
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B. Model Application

The model application tasks in Phase B are presented in Table 2. The
individual projects are discussed below in the Future Work section.

Table 2 - Model Application

Year|9/1/89 [9/1/90 [9/1/91 |9/1/92 |9/1/93
9/1/90 |9/1/91 |9/1/92 |9/1/93 |9/1/%
Topic / Study 1 2 3 4 5
1 |Ignition delay X X X
2 | Fuel-air mixing X X X
3 |Wall impingement X X X

FUTURE WORK

The proposed work schedule for the period 6/91 - 9/92 for Parts A (Model
Implementation) and B (Model Application) can be seen in Tables 1 and 2.
The plan of work for Part C (Engine Experiments) is discussed on page 35.
Details of some of the individual tasks are described below.

Part A - Multi-component fuel vaporization and atomization

We will continue to study the influence of vaporization on atomization [24]
and assess the effect on diesel combustion modeling. In addition we will
extend our implementation of the multi-component fuel vaporization model
in KIVA. To save computer time and storage, we are exploring methods
where the droplet internal temperature and concentration fields can be
solved using at most ten internal grid points per drop. As the drop vaporizes,
the number of internal grid points is reduced and eventually, when the drop
size becomes sufficiently small, the lumped parameter approach of KIVA is
recovered.

Part A - Diesel Ignition
We will extend our ignition model to consider spray ignition. In this case the

high temperature constant volume bomb experiments of Kamimoto [20] will
be used as a starting point, since they also include cases with combustion. Our
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previous diesel combustion computations [19,23] that modeled the data of
Yan and Borman [21] for a Cummins NH engine will be continued. We will
also be making use of measured pressure data from the Caterpillar engine
experiments (see Part C). As part of the ignition modeling effort, we will
explore the use of the Theobald ignition model [41].

Part A - Soot and Radiation

Soot model development will start by considering the soot model proposed by
Gentry et al. [42] for coal slurry applications which will be implemented. Due
to the complexity of the soot formation and destruction processes, it is
anticipated that soot concentration predictions will be qualitative only. It is
planned that the radiation model of Chang and Rhee [43] will be adapted for
use in this study. This model assumes the Rayleigh-limit for the soot
emissivity and a band model for the gas emissivity. More complicated
radiation models that require solution of the radiation transport equation and
that account for scattering by the spray drops are available [44]. However, in
view of the uncertainties about soot concentrations, this additional
complexity is not considered to be warranted at the present time. Much work
is being done in this area and it will be monitored for its appropriateness for
inclusion in KIVA.

Part A - Intake flow modeling

We expect to be able to perform computations for realistic intake port and
valve geometries in the near future. Comparisons will be made to steady
state flow bench experimental data. Swirl measurements and flow
visualizations will be made for comparison to the KIVA calculations using
the Caterpillar multi-valve intake port. Any discrepancies between
experiments and calculations will be investigated. This may require
improvements to the turbulence model in KIVA so that the high shear
through the valve curtain is more accurately modeled.

Part B - Ignition delay

Computations of the influence of diesel ignition delay on emissions will be
made. The data of Yan and Borman [21] will be used to verify the accuracy of
the model. The goal is to explore research issues such as the influence of the
injection timing and the number of injector holes on ignition delay. Over-
mixed vaporized fuel is thought to be responsible for the increase in HC
emissions found with an increased ignition delay. The influence of the fuel
injection parameters on multi-component fuel vaporization and mixing
during the ignition delay and the early stages of the diffusion burning phase
will be studied in later phases of the project.

34



Part B - Fuel-air mixing, Spray/wall impingement

Computations of fuel-air mixing and spray wall impingement will begin in
the summer of 1992. The location and extent of over- and under-mixed fuel-
air regions within the combustion chamber influence engine operation and
emissions. Particulates are thought to be formed when under-mixed regions
are exposed to high temperatures. The influence of the fuel injection
parameters and in-cylinder flow details on mixing and combustion during
the diffusion burning phase will be assessed.

The effect of wall impingement on in-cylinder fuel-air distributions and
combustion will also be considered. In particular, differences between sprays
whose liquid core extends to the wall and sprays whose atomization is
completed before wall impingement will be assessed. This is of interest
because of the current trends toward smaller engines and higher injection
pressures, both of which promote increased wall impingement. Wall
impingement processes are thought to influence NOx and soot emissions and
wall heat transfer. This will be examined in the study.

PARTC

An experimental program has been initiated at the University of Wisconsin
with funding from Caterpillar and from DOE/ NASA-Lewis for engine
experiments to generate data needed for KIVA validation. The work will
comprise three tasks: 1. in-cylinder gas velocity and turbulence
measurements, 2. combustion visualization experiments and 3.
measurements of engine-out emissions.

In setting up the experimental program, effort has been taken to ensure that
the modifications to the engine needed for optical access will be minimal so
that the results will be representative of actual engines. The experiments will
be conducted using dual and single intake valve configurations and with
standard and re-entrant piston designs.

The in-cylinder velocity measurements will be made using Particle Image
Velocimetry [45,46]. The method has already been used at the University of
Wisconsin [47], and techniques for rapid data analysis are available at the ERC
[48].

Combustion visualization and photography experiments will be conducted
through a window that replaces one of the exhaust valves. If window fouling
problems prove to be insurmountable, a radiation probe will be used that has
been developed and used successfully at the ERC [49]. Engine-out particulate
measurements will be made using a mini-dilution tunnel sized for the CAT
engine. It is anticipated that these emission measurements will be useful in
assessing the validity of KIVA's soot models.
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APPENDIX1 KIVA USERS GROUP ACTIVITY

The KIVA computer code and its predecessor codes were written at the Los
Alamos National Laboratories, New Mexico [1,2]. These codes have seen
increasing use by university researchers, government laboratories and engine
industries in the U.S. and abroad since the early 1970s. A U.S. KIVA Users
group was formed during the DOE Diesel Working Group Meeting at the
University of Wisconsin-Madison in the Fall of 1989 . The purpose of this
Users Group is to promote the use of KIVA and to facilitate exchange of
information among KIVA users. Since that time KIVA Users Groups have
also been formed in Europe and Japan.

The U.S. KIVA Users Group currently numbers about 80 organizations. We
have served as the editors of the KIVA Users Newsletter and four issues have
already been distributed to the membership (copies of the newsletters are
attached in this Appendix). We also co-organized the First International
KIVA Users Group Meeting with CRAY Research which took place in
February 1991 in Detroit, M. This meeting was attended by 75 registrants. A
similar meeting is currently being planned for 1992. Details will be released
in the 5th KIVA Users Newsletter later this month.
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APPENDIX 2 LIST OF RELATED PUBLICATIONS AND ABSTRACTS
(papers 1 and 4-8 partially funded under grant NAG 3-1087)
1. Reitz, R.D. "Assessment of Wall Heat Transfer Models for Premixed-Charge
Engine Combustion Computations,” Accepted for publication in SAE
Transactions, SAE Paper 910267.

Two-dimensional computations of premixed-charge engine combustion were made using the
KIVA-II code. The purpose of the study was to assess the influence of heat transfer and turbulence
model boundary conditions on engine combustion predictions. Combustion was modeled using a
laminar- and turbulent-characteristic-time model. Flow through the piston-cylinder-ring crevice
was accounted for using a phenomenological crevice-flow model. The predictions were compared
to existing cylinder pressure and wall heat transfer experimental data under motoring and fired
conditions, at two engine speeds. Two different wall heat transfer model formulations were
considered. The first is the standard wall function method. The second is based on solutions to
the one-dimensional unsteady energy equation, formulated such that the standard wall function
method is recovered in the quasi-steady limit. Turbulence was modeled using the standard k-¢
turbulence model equations. However, the turbulence model boundary conditions were modified to
account for compressibility effects by using a coordinate transformation in the wall region. The
results show that the details of wall heat transfer and turbulence model boundary conditions
influence heat transfer predictions greatly through their influence on the flame speed and the
flame structure in the vicinity of the wall. Inclusion of compressibility and unsteadiness effects
leads to increased wall heat flux values that agree better with measurements.

2. Epstein, P., Reitz, R.D. and Foster, D. "Computations of Two-Stroke Engine
Cylinder and Port Scavenging Flows," Accepted for publication in SAE
Transactions, SAE paper 910672.

A modification of the computational fluid dynamics code KIVA-II is presented that allows
computations to be made in complex engine geometries. An example application is given in
which three versions of KIVA-II are run simultaneously. Each version considers a separate block
of the computational domain, and the blocks exchange boundary condition information with
each other at their common interfaces. The use of separate blocks permits the connectedness of
the overall computational domain to change with time. The scavenging flow in the cylinder,
transfer pipes (ports), and exhaust pipe of a ported two-stroke engine with a moving piston was
modeled in this way. Results are presented for three engine designs that differ only in the angle
of their boost ports. The calculated flow fields and the resulting fuel distributions are shown to
be markedly different with the different geometries. The calculated results indicate that:
velocity profiles vary with time and are not uniform across the ports; boost port flow at high
boost angles breaks up the toroidal vortices in the cylinder that are generated by the side ports
and puts more fuel into the cylinder head dome and; trapping efficiency increases with increased
boost angle. These results suggest that the computational methods developed in this work will
be useful as a design tool for assessing the influence of engine design parameters on scavenging
efficiencies in two-stroke engines.

3. Gonzalez D., M.A., Borman, G.L. , and Reitz, R.D. "A Study of Diesel Cold
Starting using both Cycle Analysis and Multidimensional Calculations,"
Accepted for publication in SAE Transactions, SAE paper 910180.

The physical in-cylinder processes and ignition during cold starting have been studied using
computational models, with particular attention to the influences of blowby, heat transfer during
the compression stroke, spray development, vaporization and fuel/air mixture formation and
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ignition. Two different modeling approaches were used. A thermodynamic zero dimensional
cycle analysis program in which the fuel injection effects were not modeled, was used to
determine overall and gas exchange effects. The three-dimensional KIVA-II code was used to
determine details of the closed cycle events, with modified atomization, blowby and spray/wall
impingement models, and a simplified model for ignition. The calculations were used to obtain an
understanding of the cold starting process and to identify practical methods for improving cold
starting of direct injection diesel engines. It was found that, blowby gas flow represents an
important source of reductions for the cylinder gas temperature at lower cranking speeds, opposing
the squish flow. Overfueling and advanced injection increase the amount of fuel evaporated. The
spray intact core is extended at low temperatures, spray wall impingement phenomena are
characterized by low impact velocities and the bouncing of liquid drops enhances the limited
fuel-air mixture formation. Failure to achieve successful ignition at low initial air temperatures
was predicted by the simple kinetics model.

4. Reitz, R.D. and Rutland, C.J. "3-D Modeling of Diesel Engine Intake Flow
Combustion and Emissions," SAE Paper 911789.

Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards.
These standards have motivated new research efforts towards improving the performance of
diesel engines. The objective of the present program is to develop a comprehensive analytical
model of the diesel combustion process that can be used to explore the influence of design changes.
This will enable industry to predict the effect of these changes on engine performance and
emissions. A major benefit of the successful implementation of such models is that engine
development time and costs would be reduced through their use. The computer model is based on
the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization,
drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition
and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
The accuracy of the predictions is assessed by comparison with available experimental data.
Improved combustion, wall heat transfer and spray/wall impingement submodels have been
implemented in KIVA during the first year activity. In addition, work is in progress on a revised
atomization model, since preliminary results show that existing atomization models are
inaccurate under conditions of high gas temperature and pressure (e.g., turbocharged conditions).
Finally, a methodology is being developed for modeling the intake flow process to provide more
realistic initial conditions for engine computations.

5. M. A. Gonzalez D. and R. D. Reitz, "Modeling Diesel Engine Spray
Vaporization and Combustion," Proceedings of ICLASS-91, NIST, Gaithersburg,
MD., July, 1991.

Diesel engine in-cylinder processes have been studied using computational models with
particular attention to spray development, vaporization, fuel/air mixture formation and
combustion in conditions of high temperature and high pressure. A thermodynamic zero-
dimensional cycle analysis program was used to determine initial conditions for
multidimensional calculations. A modified version of the time-dependent, three-dimensional
computational fluid dynamics code KIVA-II, with a detailed treatment for the spray
calculations and a simplified model for ignition, was used to determine details of the closed
cycle events. These calculations were used to obtain an understanding of the potential
predictive capabilities of the models. It was found that there is a strong sensitivity of the
spray calculations to numerical grid resolution. However, if proper grid resolution is used, the
spray calculations were found to reproduce experimental data adequately for non-vaporizing
sprays. However, for vaporizing sprays in high temperature engine environments the
computations underpredicted measured gas phase (vapor) penetration results substantially.
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This underprediction of spray penetration reduces the accuracy of combustion predictions
greatly. The atomization drop size was found to be a key parameter influencing spray
penetration predictions and this indicates that improved atomization models are needed for
engine conditions.

6. Z. W. Lian and R. D. Reitz, "Effect of Vaporization and Gas
Compressibility on Liquid Jet Breakup," Submitted for Publication, Physics of
Fluids, 1991.

A linear stability analysis is presented for an evaporating jet. The development of the surface
hydrodynamic instability is assumed to be much faster than the surface evolution due to
evaporation. The process is then considered as quasi-steady, and the normal mode method for the
steady basic solution is applicable as an approximation. It is found that for low speed jets
undergoing Rayleigh breakup, jet surface evaporation is a destabilizing factor while for high
speed atomizing jets, surface evaporation becomes stabilizing. This is due to the fact that the
evaporation flux distributions at the troughs and crests of the waves on the surface of the liquid
jet are different for these two cases. The effect of gas compressibility is also analyzed. For
subsonic jets, the maximum growth rate and the corresponding wavenumber is underestimated by
neglecting the gas compressibility since the gas pressure and gas density at the interface is higher
than that predicted by the conventional incompressible gas theory.

7. M. A. Gonzalez D., Z. W. Lian and R. D. Reitz, "Modeling Diesel Engine
Spray Vaporization and Combustion," Submitted for publication for the 1992
SAE Congress and Exposition, Detroit, MI.

Diesel engine in-cylinder combustion processes have been studied using computational models
with particular attention to spray development, vaporization, fuel/air mixture formation and
combustion in conditions of high temperature and high pressure. A thermodynamic zero-
dimensional cycle analysis program was used to determine initial conditions for the
multidimensional calculations. A modified version of the time-dependent, three-dimensional
computational fluid dynamics code KIVA-II, with a detailed treatment for the spray
calculations and a simplified model for combustion, was used for the computations. These
calculations were used to obtain an understanding of the potential predictive capabilities of the
models. It was found that there is a strong sensitivity of the results to numerical grid resolution.
However, with proper grid resolution, the calculations were found to reproduce experimental
data for non-vaporizing and vaporizing sprays. However, for vaporizing sprays in high
temperature engine environments with combustion, extremely fine grids are indicated.
Computations made with the coarse grid sizes that are typically used underpredict measured gas
phase (vapor) penetration results substantially. This underprediction of spray penetration
reduces the accuracy of combustion predictions greatly. A study was made of factors that cause
the observed sensitivity of the results to grid size in highly vaporizing sprays. The atomization
drop size and the fuel vaporization rate were found to be key parameters that influence spray
penetration predictions. Models for the processes that influence these parameters such as
atomization, vapor diffusion and condensation processes are discussed.

8. Kong, S.-C., Ayoub, N., and Reitz, R.D., "Modeling Combustion in
Compression Ignition Homogeneous Charge Engines,” Submitted for
publication for the 1992 SAE Congress and Exposition, Detroit, ML,

The combustion mechanism in a Compression Ignition Homogeneous Charge (CIHC) engine was
studied. Previous experiments done on a four-stroke CIHC engine were modeled using the KIVA-
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II code with modifications to the combustion, heat transfer, and crevice flow submodels. A
laminar and turbulent characteristic time combustion model that has been used for spark-ignited
engine studies was extended to allow predictions of ignition. The rate of conversion from one
chemical species to another is modeled using a characteristic time which is the sum of a laminar
(high temperature) chemistry time, an ignition (low temperature) chemistry time, and a
turbulence mixing time. The ignition characteristic time was modeled using data from elementary
initiation reactions and has the Arrhenius form. It was found to be possible to match all engine
test cases reasonably well with one set of combustion model constants. Combustion was found to be
controlled by chemical kinetic rates up to the time of ignition. After ignition, comparisons
between measured cylinder pressure data and predicted pressures showed that good levels of
agreement were not possible unless the turbulent mixing time scale was included in the combustion
model. This important result implies that turbulent mixing, flame stretch and partial extinction
phenomena control the rate of combustion after ignition, even in this engine that is characterized
by homogeneous mixtures and the absence of a propagating flame. Ignition is controlled at low
temperatures by the ignition time scale. The high temperature laminar chemistry never plays a
role in determining the combustion rate since it is generally smaller than the other characteristic
times. The combustion regime is classified as being between the reaction sheet and distributed
reaction combustion.

9. Kuo, T.-W. and Reitz, R.D., "Three-Dimensional Computations of
Combustion in Premixed-Charge and Fuel-Injected Two-Stroke Engines, "
Submitted for publication for the 1992 SAE Congress and Exposition, Detroit,
ML

Combustion and flow were calculated in a spark-ignited two-stroke crankcase-scavenged engine
using a laminar and turbulent characteristic time combustion submodel in the three-dimensional
KIVA code. Both premixed-charge and fuel-injected cases were examined. A multi-cylinder
engine simulation program was used to specify initial and boundary conditions for the
computation of the scavenging process. A sensitivity study was conducted using the premixed-
charge engine data. The influence of different port boundary conditions on the scavenging process
was examined. At high delivery ratios, the results were insensitive to variations in the
scavenging flow or residual fraction details. In this case, good agreement was obtained with the
experimental data using an existing combustion submodel, previously validated in a four-stroke
engine study. However, at low delivery ratios, both flow-filed and combustion-model details
were important, and the agreement with experiment was poor using the existing combustion
submodel, which does not account for the effect of residual gas concentration. To improve the
agreement between modeling and experimental results, a modified combustion submodel was
introduced that includes the effect of residual gas concentration on the laminar characteristic
time. With the new submodel, agreement with the experiment has been improved considerably
for all cases considered in this study. These levels of agreement between experiment and
computations are similar to those found in previous applications of the laminar and turbulent
characteristic-time combustion submodel to four-stroke engine combustion. Further improvement
of the combustion submodel was made difficult by the observed coupling between the in-cylinder
flow-field and the combustion-model details at low delivery ratios.
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APPENDIX 3 FORTRAN SUBROUTINES

The three FORTRAN subroutines given in this appendix have been tested for
diesel sprays (without combustion) (subroutines atomize and walint), and for
premixed-charge spark-ignited engine combustion (subroutine chemprn), to
date. The subroutines need to be compiled and linked together with the
standard KIVA subroutines. Where noted they replace existing KIVA
subroutines.

Subroutine atomize (replaces KIVA subroutine break)

This subroutine is called from the main program. It computes drop breakup

by modeling the atomization process using results from a stability analysis of
liquid jets. The model equations and implementation details are described in
Ref [18].

Subroutine walint (new subroutine to compute spray/wall impingement)

This subroutine computes the interaction of a drop and a wall following the
models and equations given in Refs. [15] and [16]. It should be called in
subroutine pmove after the call to pfind for those drops that have left the
domain (i.e., imom=10000).

Subroutine chemprn (replaces KIVA subroutine chem)

This subroutine is based on the laminar and turbulent characteristic time
'Princeton’ combustion model used in Refs. [11,33] and [34]. The chemistry
model constants are currently setup for propane fuel. References [11,33 & 34]
should be consulted for details of model constants for other fuels. The
subroutine also contains the Zeldo'vich NOx model as given by

J.B. Heywood, Prog Energy Comb. Sci., Vol. 1, p. 135, 1976.
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subroutine atomize
include 'comd.com’
include ‘part.com’
C +++
C +++ ATOMIZATION MODEL - BASED ON STABILITY OF LIQUID JETS
C +++ SEE REITZ ATOMISATION AND SPRAY TECHNOLOGY PAPER
C +++
CNST1=0.188
CNST2=10.0
ALPHA=0.61
NPP = NP
C +++
DO 100 N=1,NP
IMOM=I4MOM(N)
TDROP=TP(N)
IF(IMOM.GT.99999 .OR. TDROP.GE.TCRIT) GO TO 100
RELVEL(N)=SQRT((U(IMOM)+UTRB(N)-UP{N))**2
i +(V(IMOM)+VTRB(N)-VP(N))**2
2 +(W(IMOM)+WTRB(N)-WP(N))**2)
IF(RELVEL(N).EQ.0.0) GO TO 100
C +++
SURTEN= max (STM*TDROP+STB,1.E-6)
14=14P(N)
RDROP=RADP(N)
DROPN=PARTN(N)
WEBER =RELVEL(N)**2*RDROP/SURTEN
WEBERG=RO(I14)"WEBER
WEBERL=RHOP *WEBER
TB=TDROP"*0.1
ITB=INT(TB)
FR=TB-FLOAT(ITB)
VISCP=FR*VISLIQ(ITB+2)+(1.0-FR)*VISLIQ(ITB+1)
VISCP= max (VISCP,1.E-10)
XNU =VISCP/RHOP
REYNOL =RDROP*RELVEL(N)/XNU
OHN = SQRT(WEBERL)YREYNOL
TAYLOR = OHN*SQRT(WEBERG)
FREQ = SQRT(SURTEN/(RHOP*RDROP**3))
C:iii: FROM JET STABILITY DISPERSION RELATIONSHIP CURVE-FIT @i
DENOM = (1.+0.865*"WEBERG**1.67)**0.6
WAVLNG = 9.02%(1.+0.45"OHN"**0.5)"(1.+0.4*TAYLOR**0.7)/DENOM
WAVLNG = WAVLNG*RDROP

GROWTH = (0.34+0.385*"WEBERG"*1.5)/((1.+OHN)*(1.+1.4*TAYLOR**0.8))

GROWTH = GROWTH'FREQ
TSHATT = 3.788'CNST2*RDROP/(GROWTH*WAVLNG)
IF (WAVLNG.LT.RDROP/ALPHA) GO TO 40
IF (TBREAK(N).LE.0.) GO TO 100
TBREAK(N) = TBREAK(N) + DT
IF (TBREAK(N).LT.TSHATT) GO TO 100
C:iiiii ENLARGE DROP ONE TIME ONLY oo
TBREAK(N) = 0.
RADEQ2 = (3."PIO2'RDROP*RDROP*RELVEL(N)/GROWTH)**0.333333
RADEG! = (0.75*"WAVLNG*RDROP*RDROP)**0.33333
RADP(N) = min (RADEQ1,RADEQ2)
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PARTN(N) = DROPN*RDROP**3/RADP(N)**3
GO TO 100
C:iiii BREAK-UP DROP  ninisinsiiciisssiiiosiooconon
40 CONTINUE
RADEQB = ALPHA*WAVLNG
DTSHAT = DT/TSHATT
C +++
RADP(N)=(RDROP+DTSHAT*RADEQB)/(1.+DTSHAT)
PARTN(N)}=DROPN*RDROP**3/RADP(N)**3
C +++ S :
IF (XDROPN(N).EQ.0.) SHEDMS(N) = 0.
SHEDMS(N) = SHEDMS(N) - DROPN*PI403R*(RADP(N)**3-RDROP**3)
IF (XDROPN(N).EQ.0.) XDROPN(N) = DROPN
IF (SHEDMS(N).LT.0.03*PMINJ)} GO TO 100
C :: CREATE NEW PARCEL IF IT IS BIG ENOUGH AND IT HAS ENOUGH DROPS ::
PARTNP = SHEDMS(N)/(PI4O3R*RADEQB**3)
IF (PARTNP.LT.XDROPN(N)) GO TO 100
PARTN(N) = XDROPN(N)
XDROPN(N) = 0.
NPP = NPP + 1
XDROPN(NPP) = 0.
TBREAK(NPP) = 0.
RADP(NPP) = RADEQB
RADPP{NPP) = RADP(NPP)
PARTN(NPP) = PARTNP

C +++ TO UREL, N1 IS A UNIT VECTOR IN DIRECTION OF V1, V2
C+++ IS A 2ND VECTOR ORTHOGONAL TO UREL AND N1, ANDN2 IS
C+++ A UNIT VECTOR INDIRECTIONOF VZ
URELX=UP({N)-(U(IMOM)+UTRB(N))
URELY=VP(N)-(V(IMOM)+VTRB(N))
URELZ=WP(N)-(W(IMOM)+WTRB(N))
RRELVL=URELX/(RELVEL(N)**2+1.E-20)
V1X=1.0-RRELVL*URELX
V1Y=0.0-RRELVL"URELY
V1Z=0.0-RRELVL*URELZ
V1Y=CVMGT(1.0,V1Y,V1X.EQ.0.0 .AND. V1Y.EQ.0.0 .AND. V1Z.EQ.0.0)
RV1=1.0/SQRT(VI1X"*2+V1Y**2+V1Z**2)
EN1X=V1X*RV1
EN1Y=V1Y*RV1
EN1Z=V1Z*RV1
V2X=URELY*EN1Z-URELZ’EN1Y
V2Y=URELZ*EN1X-URELX*EN1Z
V2Z=URELX*EN1Y-URELY*EN1X
IF(URELX.EQ.0.0 .AND. URELY.EQ.0.0 .AND. URELZ.EQ.0.0) THEN
V2X=0.0
V2Y=1.0
V2Z=0.0
ENDIF
RV2=1.0/SQRT(V2X**2+V2Y**2+V2Z"**2)
EN2X=V2X*RV2
EN2Y=V2Y*RV2
EN2Z=V2Z*'RV2
C +++
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C +++ TO DETERMINE VELOCITY DIRECTION, INCREMENT NORMAL TO DROP PATH.
C +++ DELV IS MAGNITUDE OF VELOCITY CHANGE
C +++
DELV=CNST1*"WAVLNG*GROWTH
THV=PI2*'FRAN(0.)
COSTHV=COS(THV)
SINTHV=SIN(THV)
UP{NPP)=UP(N)+DELV*(COSTHV*EN1X+SINTHV*EN2X)
VP(NPP)=VP(N)+DELV*(COSTHV*EN1Y+SINTHV*EN2Y)
WP(NPP)=WP(N)+DELV*(COSTHV*EN1Z+SINTHV'EN22Z)
C +++
TP(NPP) = TP(N)
XP(NPP) = XP(N)
YP(NPP) = YP(N)
ZP(NPP) =ZP{N)
4P(NPP) =14 :
IAMOM(NPP) =14
UTRB(NPP) = UTRB(N)
VTRB(NPP) =VTRB(N)
WTRB(NPP) = WTRB(N)
TURBT(NPP) = TURBT(N)
SPDRAG(NPP) = SPDRAG(N)
RELVEL(NPP) = RELVEL(N)
C

C +++ DROPLET COLLISION (O'ROURKE MODEL) APPLIED TO THE SHED DROPS
C +++ CONTAINED IN A SWEPT VOLUME = 4 PI RDROP**2 RLVL DTSHED.
C +++ XNCOLL IS THE PROBABLE TOTAL NUMBER OF COLLISIONS BETWEEN A
C +++ COLLECTOR DROP WITH THE OTHER N IN THE PARCEL IN TIME DTSHED.
C +++ XNCBAR IS THE PROBABLE NUMBER OF COLLISIONS THE COLLECTOR
C +++ DROP EXPERIENCES DURING THE TIME INTERVAL DTSHED.
C +++ PNOCOL IS THE PROBABILITY OF NO COLLISIONS.
C +++
SUMRAD = 2."RADP(NPP)
C +++ XNCOLL = 1."PARTN(NPP)*RVOL*PI*SUMRAD**2*RLVL*DTSHED
C +++ XNCBAR = XNCOLLAN.
XNCOLL = PARTN(NPP)*(SUMRAD/RDROP)**2
XNCBAR = XNCOLL
PNOCOL = 0.
C PNOCOL=EXP(-XNCBAR)
IF (XNCBAR.LT.100.) PNOCOL=EXP(-XNCBAR)
PNOCOL= max (PNOCOL,1.0E-08)
XX=FRAN(0.)
IF(OXX.LE.PNOCOL) GO TO 60
C +++ COLLISION OCCURS, ECOAL IS THE PROBABILITY OF COALESCENCE
FGAM=1.3
WECOL=RHOP*RELVEL(NPP)*RELVEL(NPP)*"RADP(NPP)/SURTEN
ECOAL= min (1.,2.4'FGAM/(WECOL +1.E-20))
YY=FRAN(0.)
IF(YY.GT.ECOAL) GO TO 60
C +++ CASE 1: COALESCENCE
ZZ=PNOCOL
VNU=XNCBAR'PNOCOL
DO 20 NK=2,1000
ZZ=ZZ+VNU

56



IF(ZZ.GE.XX) GO TO 30
VNU=VNU*XNCBAR/FLOAT(NK)
20 CONTINUE
30 COLLN=FLOAT(NK-1)
C +++ PROHIBIT MORE COLLISIONS THAN ARE PHYSICALLY POSSIBLE
IF(COLLN.GE.PARTN(NPP)) COLLN=PARTN(NPP)-1.
RATIO = PARTN(NPP)/(PARTN(NPP)-COLLN)
XX = RATIO*RADP(NPP)**3
RADP(NPP)=(XX)**0.3333333333333333
60 CONTINUE
RADPP(NPP) = RADP(NPP)
PARTN(NPP) = SHEDMS(N)/(PI403R*RADP(NPP)**3)
SHEDMS(N) = 0.
SHEDMS(NPP) = 0.
c

100 CONTINUE
NP = NPP
RETURN
END
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subroutine walint

include test for the weber number of drops impinging a surface,
based on least square aproximation to the experimental
results of Wachters and Waesterling.

O 00000

(o]

OO0

OO0O0O0OO00 O

October, 1989.

include ‘comd.com’
include ‘part.com’
kpsq = kho(nho)

if (nho.eq.0) kpsg=nzp

KPSQ1= KPSQ - 1

if (radp(npn).le.0.) return
WALHIT(NPN)=WALHIT(NPN)+1.0

. CALCULATE THE INWARD NORMAL TO THE WALL AND DEFINE (XPOINT,YPOINT,
- ZPOINT AS A POINT ON THE WALL.

14=14P(NPN)

I=ITAB(14)
J=JTAB(I4)
K=KTAB(14)
11=l4+1
[2=H +NXP
13=14+NXP
18=14+NXPNYP
15=18+1
16=15+NXP
17=18+NXP
WPIST=WPISTN
IF (K.GT.KPTOP) WPIST=0.

it FOR K=1

KPED = 1

IPED = 1

IF (.GE.IPED) KPED = 1

ITOP =0

IBOT =0
IF (KEQ.KPED.OR.K.EQ.KPTOP) IBOT=1
IF (KEQ.NZ.OR.KEQ.KPSQ1) ITOP=1
IF(K.EQ.KPED.AND.F(I11).NE.0.0) THEN
IF(IBOT.EQ.1.AND.F(11).NE.0.0) THEN

/3\
3-3 /2
/3 1
/ /
4 1
XPOINT=X(12)
YPOINT=Y(12)
ZPOINT=Z(I2)
XA=X(12)-X(14)
YA=Y(12)-Y(I4)
ZA=Z(12)-Z(14)
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XB=X(13)-X(11)
YB=Y(13)-Y(I1)
ZB=2(13)-Z(11)
=: FOR THE BOTTOM CORNER CELL
ELSE IF(K.EQ.KPED) THEN
ELSE IF(IBOT.EQ.1) THEN

(oM

c —
c 3 136
c \ /3
c V/ 53
c 3./ 3-32
c Y,
c / 3/
c 4 1
XPOINT=X(16)
YPOINT=Y(I6)
ZPOINT=Z(16)
XA=X(16)-X(14)
YA=Y(16)-Y(14)
ZA=Z(16)-Z(14)
XB=X(I3)-X(15)
YB=Y(I3)-Y(I5)
ZB=Z(13)-Z(15)
C ::: FOR TOP WALL K=NZ OR K=KPSQ1
ELSE IF(ITOP.EQ.1.AND.F(I1).NE.0.0) THEN
c
c y A—
c /3
c / /
c 8 35
c \3/
XPOINT=X(16)
YPOINT=Y(I6)
ZPOINT=Z(I6)
XA=X(16)-X(18)
YA=Y(I6)-Y(I8)
ZA=Z(l6)-Z(18)
XB=X(15)-X(17)
YB=Y(i5)-Y(I7)
ZB=2(15)-2(17)
C :: FOR THE TOP CORNER CELL
ELSE IF(ITOP.EQ.1) THEN
c 7
c /! 136
c /13
c Y —
c \ 3-32
c I\ 3/
c /37
c a1
C -
XPOINT=X(I2)
YPOINT=Y(I2)
ZPOINT=Z(i2)
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OO0

oo

XA=X(I2)-X(18)
YA=Y(I2)-Y(18)
=Z(12)-Z(18)

XB=X(I1)-X(17)
YB=Y(I1)-Y(17)
ZB=Z(11)-Z(17)

::: FOR CONSTANT | WALL

ELSE

36
5/3
<=meeen 3- 3
3----3--32

4 1
XPOINT=X(15)
YPOINT=Y(15)
ZPOINT=Z(I5)
XA=X(15)-X(12)
YA=Y(15)-Y(I2)
ZA=2(15)-Z(12)
XB=X(16)-X(I1)
YB=Y(16)-Y(I1)
ZB=2(16)-Z(I1)
END IF
XNORM=YA*ZB-ZA*YB
‘YNORM=ZA*XB-XA*ZB
ZNORM=XA*YB-YA*XB
SNORM=SQRT(XNORM**2+YNORM**2+ZNORM**2)
XNORM=XNORM/SNORM
YNORM=YNORM/SNORM
ZNORM=ZNORM/SNORM

UPREL=UP(NPN)

VPREL=VP(NPN)

WPREL=WP(NPN)-WPIST
QDOTN=UPREL"XNORM+VPREL*YNORM+WPREL*'ZNORM

. GAMMAA IS THE ANGLE BETWEEN THE NORMAL AND RELATIVE VELOCITY

QPART=SQRT(UPREL**2+VPREL**2+WPREL"*2)
GAMMAA=acos(-(UPREL*XNORM+VPREL*YNORM+WPREL*ZNORM)/QPART)

.- DETERMINE THE POINT (XWALHT,YWALHT,ZWALHT) THE DROP HIT THE WALL.
.- DPOINT IS THE NORMAL DISTANCE FROM THE PRESENT DROP TO THE WALL.

DPOINT=(XP(NPN)-XPOINT)*XNORM+(YP(NPN)-YPOINT)*YNORM+
1 (ZP(NPN)-ZPOINT)*ZNORM
DPOQCG=DPOINT/(QPART*cos(GAMMAA))

XWALHT  =XP(NPN)+DPOQCG*UPREL

YWALHT =YP(NPN)+DPOQCG*VPREL

ZWALHT =ZP(NPN)+DPOQCG*WPREL
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surten=max(stm*tp(npn)+stb,1.0e-086)
wedrop=rhop*(qdotn**2)*2.0*radp(npn)/surten

test to determine the nature of the impact

if(wedrop.le.80.0) then

weber number after impact
wedropo=0.67852227*wedrop*{exp((-4.415135e-02)*wedrop))
normal velocity after impact
qdotn2=qdotn*(1.0+sqrt{wedropo/wedrop))

velocity components

up(npn)=uprel-qdotn2*xnorm

vp{npn)=vprel-qdotn2*ynorm
wp(npn)=wprel-qdotn2*znorm+wpist

new location

xp(npn)=xwalht+abs(dpogcg)*up(npn)
yp(npn)=ywalht+abs(dpoqcg)*vp(npn)
Zp(npn)=zwalht+abs(dpoqcg)*wp(npn)

distwp=sqrt((xp(npn)-xwalht)**2+(yp(npn)-ywalht)**2+
*  (zp(npn)-zwalht)**2)

else

- THE TANGENTIAL VECTOR ON THE WALL SURFACE IN THE DIRECTION OF
: THE RELATIVE VELOCITY VECTOR IS GIVE BY (XTAN,YTAN,ZTAN)

XTAN=UPREL-QDOTN*XNORM
YTAN=VPREL-QDOTN*YNORM
ZTAN=WPREL-QDOTN*ZNORM
STAN=SQRT(XTAN**2+YTAN**2+ZTAN**2)
XTAN=XTAN/STAN
YTAN=YTAN/STAN
ZTAN=ZTAN/STAN

::: THE BINORMAL VECTOR B=(T X N) IS IN THE PLANE OF THE SURFACE
.1 B=(XBIN,YBIN,ZBIN)

 XBIN=YTAN*ZNORM-ZTAN*YNORM
YBIN=ZTAN*XNORM-XTAN*ZNORM
ZBIN=XTAN*YNORM-YTAN*XNORM

.- DETERMINE PSI THE ANGLE RELATIVE TO THE TANGENTIAL VECTOR IN
- THE PLANE OF THE WALL TO MOVE THE DROP. BETA IS THE PARAMETER

.. DETERMINED FROM THE ANGLE GAMMAA.

BETA=PI*SQRT(sin(GAMMAA)/(1.0-sin(GAMMAA)))
XXX=FRAN(0.0)
YYY=FRAN(0.0)

PSI=-(PI/BETA)* log(1.0-XXX*(1.0-EXP(-BETA)))
IF(YYY.GT.0.5) PSI=-PSI
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.- FIND THE DIRECTION OF THE NEW RELATIVE VELOCITY

COSPSI=cos(PSl)

SINPSI=sin(PSI)
XVNEW=XTAN*COSPSI+XBIN*SINPSI
YVNEW=YTAN*COSPSI+YBIN*SINPSI
ZVNEW=ZTAN*COSPSI+ZBIN*SINPSI

- SET THE NEW RELATIVE VELOCITY AS SOME FRACTION (FRACT) OF THE OLD
-+ RELATIVE VELOCITY AND UP DATE THE NEW ABSOLUTE VELOCITIES.

FRACT=1.0
VELNEW=FRACT*QPART
UP(NPN)=VELNEW*XVNEW
VP(NPN)=VELNEW*YVNEW
WP(NPN)=VELNEW*ZVNEW + WPIST

new location
DMOVE=2.0"RADP(NPN)
XP(NPN)=XWALHT+DMOVE*XNORM
YP(NPN)=YWALHT+DMOVE*YNORM
ZP(NPN)=ZWALHT+DMOVE*ZNORM

END IF

RETURN
END
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subroutine chemprn
include 'comd.com’
C +++
CROLF.1/88... PRINCETON COMBUSTION MODEL ..................
C ... FROM ABRAHAM ET AL. COMBUSTION & FLAME, VOL. 60, P. 309, 1985,
C +++
c DIMENSION YY(9),CK(9),A(5),B(5),D(5)
DIMENSION YY(12),CK(12),A(5),B(5),D(5)
REAL KCO2,KH20
Fo(Q)=16.318*Q-18.972
F1(Q)=11.2213*Q**3-21.8752*Q**2+14.9469"Q-2.654
F2(Q)=0.9952"Q-0.3514
DATA EPSIT,ITMAX/1.E-03,90/
DATA BCO2,EC0O2,5C02/5.86E-06,68353.9,0.9908/
DATA BH20,EH20,SH20/8.60534E-06,10415.9,0.9894/
DATA IFUEL,I02,IN2,1CO2,IH20,IH2,1CO,INO/
&1,2,3,4,5,7,11,12/
DATA CM1, CM2 , CM3 /
& 8.25,0.142,0.235/
C NOTE: CM1 INCREASED TO FOR PR=0.66. USE 1.9 FOR SHORT SPARK ELSE 1.8
data taud,hspark/0.,0.3/
DATA ANUMC,ANUMH,ANUMO/3.,8.,0./
data BF,EA,SSL1,SSL2,SSL3,ALPHA1,ALPHA2,BETA1,BETA2,ACTEX1,ACTEX2/
& 1.54e-12,3.0604,34.22,138.65,1.08,2.18,0.8,0.16,0.22,0.08,1.15/
data temspk,pspark,gamspk,resid,phispk/0.,0.,0.,0.,0./
TCHEM = 1.0E-10
nspark=2
if (iignl(2).eq.0) nspark=1
C %%% LOCATE THE IGNITION CELL
IF (NHO.GT.0) GO TO 191
DO 190 N=1,NSPARK
DO 180 K=1,NZ
14K=(K-1)*"NXPNYP
14JK=14K+(JIGNF(N)-1)*"NXP
14=14JK+IIGNL(N)
IF(ZHEAD-Z(14).LE.HSPARK) GO TO 185
180 CONTINUE
185 KSPARK = K
IF (KSPARK.GE.NZ) KSPARK = NZ-1
KIGNB(N)=KSPARK
KIGNT(N)=KSPARK
190 CONTINUE
191 CONTINUE
4R = (KIGNB(1)-1)*NXPNYP + (JIGNF(1)-1)*NXP + HGNL(1)
COMB STORE UNBURNED GAS PARAMETERS FOR IGNITION MODEL
IF (TAUD.NE.O0.) GO TO 1000
PHISPK=0.
DO 900 K=1,NZ
14B=(K-1)*"NXPNYP
DO 800 J=1,NY
14=14B+(J-1)*"NXP+1
DO 700 [=1,NX
IF(F(14).EQ.0.) GO TO 700
DO 200 ISP=1,nsp
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YY(I1SP)=SPD(14,ISP)/RO(14)
CK(ISP)=SPD(i4,ISP)*RMW(ISP)/RO(14)

200 CONTINUE
OXYGN=2."(CK(102)+CK(ICO2))+CK(IH20)+CK({ICO)+ANUMO*CK(IFUEL)
HYDRN=2.*(CK(IH20}+CK(IH2)) +ANUMH*CK(IFUEL)
CARBN=CK(ICO2)+CK(ICO) +ANUMC*CK(IFUEL)

IF (14.EQ.I14R) PHISPK=CK(IFUEL)*(2.*ANUMC+0.5*ANUMH)/
& (ANUMO*CK(IFUEL)+2."CK(I02))
SUMY=0.
DO 210 ISP = 4,11
210 SUMY = SUMY + YY(ISP) - e -
if (i4.eq.14r) resid=sumy
C +++ SAVE RESIDUAL CONCENTRATIONS AT THE TIME OF SPARK IN SPD(NSP)
¢ SPD(I4,NSP)= SUMY*RO(l4)
700 14=14+1
800 CONTINUE
900 CONTINUE
C +++
TEMSPK = TEMP(l4R)
PSPARK = P(l4R)
GAMSPK = GAMMA(I4R)

C
1000 CONTINUE
C
C.es ESTIMATE THE UNBURNED GAS TEMPERATURE .............

C.ne AND LAMINAR FLAME SPEED NEAR THE SPARK CELL .............

- TEMPI4 = TEMSPK*(P(I4R)/PSPARK)**(1.-1./GAMSPK)
SSUBLO = SSL1 - SSL2*(PHISPK-SSL3)**2
IF (SSUBLO.LT.1.0) SSUBLO = 1.0
ALPHA = ALPHA1 - ALPHA2*(PHISPK - 1.)
BETA =-BETA1 + BETA2*(PHISPK - 1.)
SSUBL = SSUBLO*((TEMPI4/298.)**ALPHA)
&*((P(14R)/1.013E06)**BETA)*(1.-2.1*RESID)
IF (SSUBL.LT.1.0) SSUBL = 1.0
ELT = 0.1643168*(TKE(I4R)**1.5)/EPS(I4R)

TAUD= CM1*ELT/SSUBL

DO 90 K=1,NZ
14B=(K-1)*"NXPNYP
DO 80 J=1,NY
14=14B+(J-1)"NXP+1
DO 70 I=1,NX
IF(F{14).EQ.0.) GO TO 70
C +++
C +++ CONCENTRATIONS CK, MASS FRACTIONS YY
C +++
DO 20 ISP=1,11
YY(ISP)=SPD(14,ISP)/RO(I4)
CK(ISP)=SPD(I4,ISP)*RMW(ISP)/RO(14)
20 CONTINUE
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OXYGN=2."(CK(102)+CK(IC02))+CK(IH20)+CK(ICO}+ANUMO*CK(IFUEL)
HYDRN=2.*(CK(IH20)+CK(IH2)) +ANUMH*CK(IFUEL)
CARBN=CK(ICO2)+CK(ICO) +ANUMC*CK(IFUEL)
EQPHI=(2.*CARBN+0.5*"HYDRN)/OXYGN
C ..... APPROX. TREATMENT FOR PHI>3.0 AND PHI<40. ...........
BOT=2."ANUMC+0.5*ANUMH-3.*ANUMO

FUEL= 0. , .
IF (EQPHI.GE.3.0) FUEL=(2.*CARBN+0.5*"HYDRN-3.*OXYGN)/BOT

CARBN=CARBN-ANUMC*FUEL

HYDRN=HYDRN-ANUMH*FUEL

OXYGN=OXYGN-ANUMO*FUEL

C ..... ITERATE TO FIND EQUILIBRIUM SPECIES DENSITIES .........
C ..... USE COCO2 RATIO FROM NASA CODE FIT AS INITIAL GUESS ...

IPHI=EQPHI
IF (IPHI.EQ.0) COCO2=FO(EQPHI)
IF (IPHI.EQ.1) COCO2=F1(EQPHI-1.)
IF (IPHI.GT.1) COCO2=F2(EQPHI)
COC02=2.*EXP(COCO2)
COC00=COCO2
5 EAA=1.987*TEMP(14)
C20=0.
ECEA=ECO2/EAA
IF (ECEA.GT.50.) GO TO 6
C ... KCO2 = EQUILIB. CONSTANT FOR CO + .502 = CO2 .............
KCO2=BCO2*(TEMP(14)**SCO2)*EXP(ECEA)

C20=2./(KCO2*KCO2*RO(14))
C ... KH20 = KCO2 / KH20O' (KH2O' EQ. CONST. FOR H2 + 0.502 = H20 ) ..

8 KH20=BH20*(TEMP(I4)**SH20)*EXP(EH20/EAA)
A(5)=KH20*(CARBN-OXYGN)
A(4)=CARBN*(2.*KH20+1.)+0.5*HYDRN-OXYGN*(KH20+1.)
A(3)=2.*CARBN+0.5"HYDRN-OXYGN+KH20*C20
A(2)=(KH20+1.)*C20
A(1)=C20
B(5)=A(5)
D(5)=B(5)
C .. SOLVE QUARTIC EQUATION FOR CO-CO2 RATIO WITH NEWTON POLY. SOLVER -
DO 8 ICONC=1,ITMAX
DO 7 LL=1,4
L=5-LL
B(L)=A(L)+COCO2*B(L+1)
7 D(L)=B(L)+COCO2*D(L+1)
COC21=COCO2-B(1)/D(2)
IF (ABS(COC21-COCO2).LT.EPSIT*COCO0) GO TO 9
COCO2-COC21
8 IF (COCO2.LT.0.) COCO2=-COCO2
ERRO=0.
WRITE(6,14) ITMAX, TEMP(14)
14 FORMAT(1H ,2X,'CO-CO2 ITERATION FAILED AFTER',I5,' ITERATIONS',
$' TEMPERATURE',G10.4) '

COCO2=COCO0
C ... COMPUTE LOCAL EQUILIBRIUM COMPOSITION, YY'S .....ccccevnrnvne.

9 H20=0.5*"HYDRN/(1.4KH20*COCO2)
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CO2=CARBN/(1.+COCO2)
YY(IH20)=H20*MW(IH20)
YY(ICO2)=CO2*MW(ICO2)
YY(ICO)=COCO2*CO2*MW(ICO)
YY(IH2)=H20*KH20*COCO2*MW(IH2)
YY(102)=1.-(YY(IH20)+YY(ICO2)+YY(ICO)+YY(IH2)+YY(IN2))
IF (EQPHI.GE.2.) YY(102)=0.5*C20*MW(I02)/(COCO2*COCO2)
YY(IFUEL)=1.-(YY(I02)+YY(IH20)+YY(ICO2)+ YY(ICO)+YY(IH2)+ YY(IN2))

DELTS = (T-T1IGN)/TAUD
FACSPK = 1.-EXP(-DELTS)
C ... FIND CHARACTERISTIC REACTION TIME, TAUCHM ..........cc.n..
CM23 = CM2/CM3
DELYPS = 0.
DO 55 ISP = 4,11
55 DELYPS = DELYPS + SPD(l4,ISP)/RO(14)
cresidDELYPS = DELYPS - SPD(I14,NSP)/RO(14)
c dypsav=delyps
DELYPS = DELYPS - resid
DELYFO = (SPD(14,IFUEL)+SPD(14,102))/RO(14)-(YY(IFUEL)+YY(102))
DELYPS = ABS(DELYPS)
DELYFO = ABS(DELYFO)
FACPHI = 1.0E-20
IF (DELYFO.NE.0..AND.DELYPS.NE.0.) FACPHI = CM23*DELYPS/DELYFO
TAUTRB = CM2*'TKE(I4)/EPS(14)
CROLF IF (FACPHI.LT.1..AND.DELYFO.NE.0.) TAUTRB = TAUTRB/FACPHI
IF (FACPHIL.LT.1..AND.DELYFO.NE.O0..AND.DELYPS.NE.O.)
1 TAUTRB = TAUTRB/FACPHI
C ... LAMINAR FLAME KINETIC TIME ......cccovrevunns
EQPHI=CK(IFUEL)*(2.*ANUMC+0.5*ANUMH)/
& (ANUMO*CK(IFUEL)+2.*CK(102}))
BETA =-BETA1 + BETA2*(EQPHI - 1))
PREEXP = BF*TEMP(l4)*((1.013E06/P(14))**(1.42."BETA))
CKUO PREEXP = BF*TEMP(l4)*((1.013E06/P(l4))**0.75)
ACTEXP = {1.+ACTEX1*ABS(EQPHI-ACTEX2))*EA/(1.987'TEMP(I4))
taulam = 0.
if (abs(actexp).le.200.)
&TAULAM = PREEXP*EXP(ACTEXP)
TAULAM = 0.62*TAULAM/(1.-2.1*RESID)**2

TAUCHM = TAULAM + TAUTRB*FACSPK
C...... FIRST ORDER ACCURATE STIFF SCHEME ......
FACEXP = 1.-EXP(-DT/TAUCHM)
DO 60 ISP=1,11
RRATE = -(SPD(I4,ISP) - RO(14)*YY(ISP))*FACEXP
SPD(14,ISP) = SPD(I4,ISP) + RRATE
DECHEM = - RRATE*HTFORM(ISP)*RMW(ISP)/RO(14)
DECHK = ABS(DECHEM/SIE(I4))
SIE(14) = SIE(14) + DECHEM
TCHEM = max (TCHEM,DECHK)
C END COMBUSTION MODEL ...........
60 CONTINUE
c
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c
Cc

............. EXTENDED ZELDOVICH NOX MODEL ...........
... FROM J.B. HEYWOOD, PROG. ENERGY COMB. SCI., VOL. 1, P. 135, 1976

NO = 1
IF (NO.EQ.0) GO TO 70
TA=TEMP(14)*0.001
TALOG-= log(TA)
EQUILIBRIUM CONSTANTS FROM M&M GMR-4361:
QK1 = 0.794709* log(TA)-113.208/TA+3.16837-0.443814*TA
1 +2.69699E-02*TA**2
QK2 = 0.431310* log(TA)- 59.655/TA+3.50335-0.340016°TA
1 +1.58715E-02"TA**2
QK4 = 0.990207* log(TA)- 51.792/TA+0.99307-0.343428°TA
1 +1.11668E-02°TA**2
QKS = 0.652939" log(TA)+ 9.823/TA-3.93033-0.163490°TA
1 +1.42865E-02*TA**2
QK1 = EXP(QK1)
QK2 = EXP(QK2)
QK4 = EXP(QKA4)
QK5 = EXP(QK5)
NOW DO NO KINETICS
OXYGEN = ABS(SPD(l4,102))*RMW(I02)
XNITRO = ABS(SPD(l4,IN2))*RMW(IN2)
HYDROG = ABS(SPD(I4,IH2))*RMW(IH2)
QKNO = 4.4742°EXP(-75.677/TA)
QKO2N2 = SQRT(QK1*QK2*OXYGEN*XNITRO)
ALFAP = QKNO*RMW(INO)QKO2N2
ALFA = SPD(I4,INO)*ALFAP
SQK1N2 = SQRT(QK1*XNITRO)
RR1 = 1.626E13*QKO2N2*SQK1N2/QKNO
RR2 = 6.625E09*TEMP(I4)*EXP(-3150./TEMP(I4))*SQK1N2*OXYGEN
RR3 = 4.216E13*SQRT(QK1*XNITRO*OXYGEN*HYDROG/QKS)
FORWD = DT*2.*MW(INO)*RR1/(1.+ALFA*RR1/(RR2+RR3))
TOP = SPD(I4,INO)+FORWD
BOT = 0.5*(1.+SQRT(1.+4.°TOP*FORWD*ALFAP**2))
SPD(14,INO) = TOP/BOT

CROLF ........... END NOX MODEL .......coceereemrerrererrenens

70 14=14+1

80 CONTINUE
90 CONTINUE

RETURN
END

67
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